MC33468

Variable Frequency Micropower Step-up DC-DC Converter

The MC33468 is a micropower step-up switching voltage regulator, specifically designed for handheld and pager applications, to provide a regulated output voltage using a minimum of external parts. This device features a quiescent bias current of $3.0~\mu A$ typical.

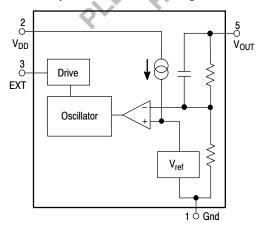
The MC33468 features a highly accurate voltage reference, an error amplifier, an oscillator, a variable frequency modulation (VFM) controller, a drive pin (EXT) for an external transistor, and feedback resistors.

The Vout pin is fixed at 2V in the IC. The output of the converter with an inductor, a diode, a capacitor, a drive transistor, and feed-back resistors can have an output of 30V.

Features

- Low Quiescent Bias Current of 3.0 μA
- High Output Voltage Accuracy of ±2.5%
- Low Startup Voltage of 0.8 V at No Load
- Output Voltage Set With External Resistors
- Operating Temperature Range: -40°C to +85°C

ORDERING INFORMATION


Device	Output Voltage	Marking	Reel Size	Tape Width	Quantity
MC33468SN-20ATR	2.0	0KXX*	7"	8 mm	3000

^{* &}quot;XX" denotes the lot number

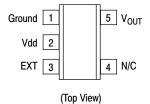
PIN DESCRIPTION

Pin No.	Symbol	Description	
1	GND	Ground	
2	V_{DD}	Input	
3	EXT	External Transistor Drive	
4	NC	No Connection	
5	V _{OUT}	Voltage Output Pin (Fixed at 2V)	

Representative Block Diagram

ON Semiconductor®

http://onsemi.com

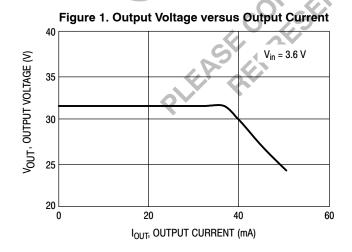

VARIABLE FREQUENCY MICROPOWER DC-to-DC CONVERTER

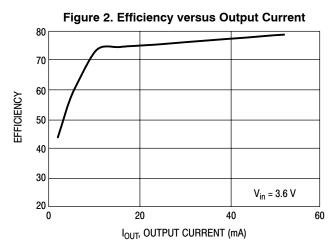
SEMICONDUCTOR TECHNICAL DATA

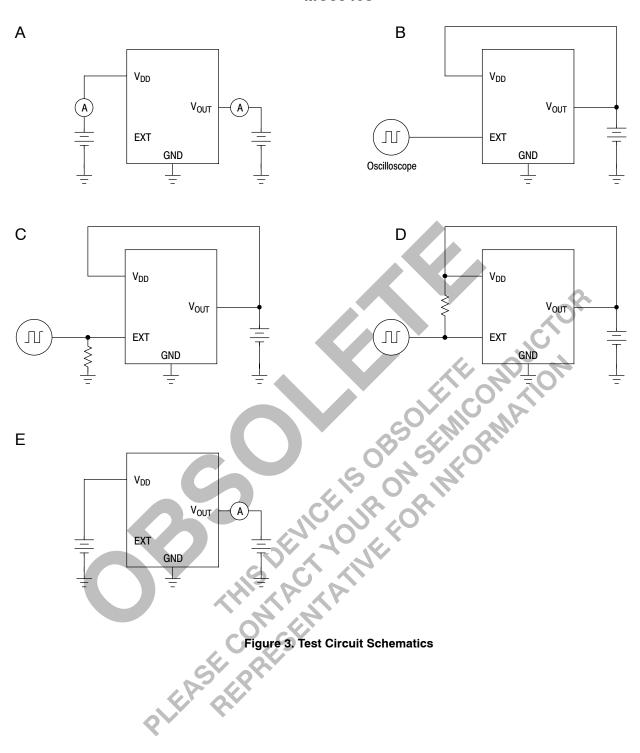
N SUFFIX
PLASTIC PACKAGE
CASE 1212
(SOT-23-5)

PIN CONNECTIONS

MC33468


MAXIMUM RATINGS ($T_C = 25^{\circ}C$, unless otherwise noted.)


Rating	Symbol	Value	Unit
Power Supply Voltage (Transient)	V_{DD}	12	V
Power Supply Voltage (Operating)	V_{DD}	10	V
External Pin Voltage	V _{EXT}	-0.3 to V _{DD} + 0.3	V
EXT Pin Source/Sink Current	I _{EXT}	50/50	mA
Power Dissipation and Thermal Characteristics N Suffix, Plastic Package Case 1212 (SOT-23-5) Maximum Power Dissipation @ T _A = 250°C Thermal Resistance, Junction-to-Air	P _D R _{0JA}	150 667	mW °C/W
Operating Junction Temperature	TJ	125	°C
Operating Ambient Temperature	T _A	-40 to +85	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C


ELECTRICAL CHARACTERISTICS (V_{DD} = 1.9 V, T_A = 25°C, unless otherwise noted.)

Characteristic	Cumbal	Min	Tim	Man Di	Unit	Note ¹
Characteristic	Symbol	Willi	Тур	Max	Unit	Note
OSCILLATOR				. C)		
Frequency	f _{osc}	-	180	-	kHz	В
Oscillator Minimum Supply Voltage (I _O = 0 mA)	V _{DD}	-	0.7	0.8	V	В
Oscillator Duty Cycle	D	65	75	_	%	В
EXT OUTPUT						
ON State Source Current (V _{EXT} = GND)	I _{source}	1.5	-	-	mA	С
OFF State Sink Current (V _{EXT} = 1.9 V)	I _{sink}	1.5			mA	D
TOTAL DEVICE						
Output Voltage	V _{OUT}	1.950	2.000	2.050	V	
Quiescent Bias Current ($V_{OUT} = 1.9 \text{ V}, I_{O} = 0 \text{ mA}$)	I_{Q}	-	15	25	μΑ	Α
Quiescent Bias Current ($V_{OUT} = 2.1 \text{ V}, I_{O} = 0 \text{ mA}$)	I_{Q}	-	3.0	5.0	μΑ	Α
Internal Resistor (V _{OUT} to GND)	R _{Vout}	2.0	_	_	$M\Omega$	
Output Voltage Temperature Coefficient $I_{OUT} = 10 \text{ mA}, -40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$	$\frac{\Delta V_{OUT}}{\Delta T_{\Delta}}$	_	±50	-	ppm/oc	E

^{1.} Indicates test circuits shown on next page.

DEFINITIONS

Quiescent Bias Current – Current which is used to operate the switching regulator chip and is not delivered to the load.

Leakage Current – Current drawn through a transistor junction, under a specified collector voltage, when the transistor is off.

FUNCTIONAL DESCRIPTION

Introduction

The MC33468 is a monolithic power switching regulator optimized for dc-to-dc converter applications where power drain must be minimized. The MC33468 uses Variable Frequency Modulation to step up the input DC voltage to a higher accurate output voltage. Potential applications include low power consumer products and battery powered portable products. Typical application circuits are shown in Figure 4.

Operating Description

The MC33468 converter operates as a fixed on-time, variable off-time voltage mode ripple regulator. Operation is intended to be in the discontinuous mode, where the inductor current ramps up to a peak value which is greater than or equal to twice the value of the dc input current during

the on-time of the transistor switch. During the off-time of the transistor switch, the inductor current ramps down to zero and remains at zero until another switching cycle begins.

Since the V_{DD} pin is connected to the input no external startup circuit is needed.

Oscillator

The oscillator frequency, is internally programmed to 180 kHz. The duty ratio of the oscillator is designed for a constant value of 0.75 nominal. Hence the nominal on–time of the power switch is:

$$t_{on} = \frac{D}{f_{osc}} = \frac{0.75}{(180 \text{ kHz})} = 4.16 \text{ }\mu\text{s}$$

Feedback Comparator

The output voltage is sensed and fed to a high speed comparator noninverting input through an internal resistive divider. The comparator inverting input is connected to an internally trimmed reference.

With a voltage mode ripple converter operating under normal conditions, output switch conduction is initiated and terminated by the oscillator, off-time is controlled by the high speed voltage feedback comparator.

Figure 4. Typical 2.0 V Application with BJT

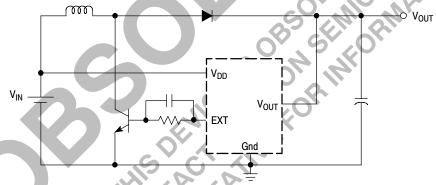


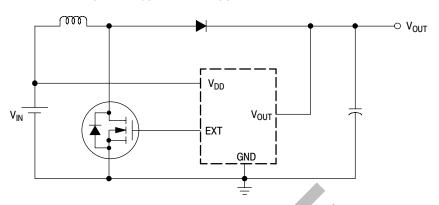
Figure 5. Design Equations for Step-Up

Calculation	Equation		
ton	D f _{osc}		
ALEA PLEY	$<\frac{(n)(V_{in})^2(t_{on})}{P_O}$		
I _{L(avg)}	l _{in}		
I _{L(pk)}	$\frac{(V_{in} - V_{sat})(t_{on})}{L}$		
Vripple(pp)	$\approx \frac{(t_{ON})(I_{O})}{(C_{O})}$		

The following converter design characteristics must be chosen:

V_{in} - Nominal Operating dc input voltage

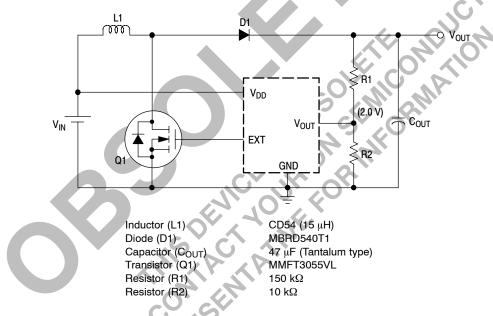
V_O – Desired dc output voltage


IO - Desired dc output current

 $V_{\text{ripple(pp)}}$ – Desired peak–to–peak output ripple voltage. For best performance the ripple voltage should be kept to a low value since it directly affects regulation. Capacitor C_O should have a low equivalent series resistance (ESR).

NOTE: 1. V_{sat} – Saturation voltage of the switching transistor.

n - Estimated circuit efficiency.

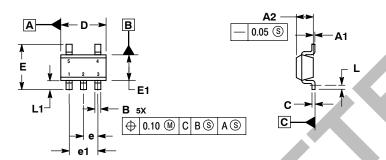

Figure 6. Typical 2.0 V Application with MOSFET

If input voltage is high enough, higher efficiency may be obtained by using a MOSFET as the switch transistor, in which no gate resistor or capacitor is needed.

MOSFET and BJT voltage rating (V_{DS} and V_{CE}) should be high enough to allow for spikes in voltage.

Figure 7. Typical Application for Output Voltages Over 2.0 V

When choosing the output capacitor, ensure that the capacitor voltage is higher than V_{out} . Select an inductor with low DC resistance and high saturation. A Schottky diode is recommended for a lower voltage drop and faster switching.

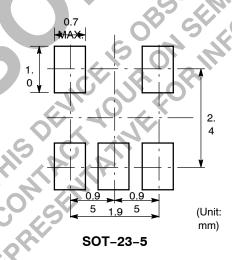

Use external resistors that are much smaller resistance than the resistance internal to the I_C (minimum of 2 M Ω). When R1 is much less than the internal resistance, the error is minimized.

MC33468

PACKAGE DIMENSIONS

N SUFFIX

PLASTIC PACKAGE CASE 1212-01 (SOT-23) **ISSUE O**



NOTES:

- DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES
- 3. DATUM C IS A SEATING PLANE.

	MILLIMETERS		
DIM	MIN	MAX	
A1	0.00	0.10	
A2	1.00	1.30	
В	0.30	0.50	
C	0.10	0.25	
D	2.80	3.00	
E	2.50	3.10	
E1	1.50	1.80	
е	0.95 BSC		
e1	1.90 BSC		
L	0.20		
L1	0.45	0.75	

Recommended Footprint for Surface Mount Applications

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative